Your Global Automation Partner

REM... | RES... Drehgeber mit SAE J1939-Schnittstelle

Betriebsanleitung

Hans Turck GmbH & Co. KG | T +49 208 4952-0 | F +49 208 4952-264 | more@turck.com | www.turck.com

Inhaltsverzeichnis

1 Über diese Anleitung						
	1.1	Zielgruppen	5			
	1.2	Symbolerläuterung	5			
	1.3	Weitere Unterlagen	5			
	1.4	Feedback zu dieser Anleitung	5			
2	Hinweise	zum Produkt	6			
	2.1	Produktidentifizierung	6			
	2.2	Lieferumfang	6			
	2.3	Rechtliche Anforderungen	6			
	2.4	Hersteller und Service	6			
3	Zu Ihrer S	icherheit	7			
	3.1	Bestimmungsgemäße Verwendung	7			
	3.2	Naheliegende Fehlanwendung	7			
	3.3	Allgemeine Sicherheitshinweise	7			
4	Produktb	eschreibung	8			
	4.1	Geräteübersicht	8			
	4.2	Funktionsprinzip	8			
	4.3	Funktionen und Betriebsarten	8			
	4.3.1	Ausgangsfunktion	8			
	4.3.2	Abschlusswiderstand	8			
_	4.4	Technisches Zubenor	9			
5	Montierer	n	0			
	5.1	Vollwellengeber mit Kupplung montieren 1	1			
	5.2	Hohlwellengeber mit Kupplung montieren	1			
6	Anschließ	en 1	14			
	6.1	Anschlussbild 1	4			
7	In Betrieb	nehmen 1	15			
	7.1	Parameter – Default-Einstellungen 1	15			
	7.2	Parameterdaten	15			
	7.2.1	Bedeutung der Parameter-Bits	16			
	7.3 731	Prozessdaten	17 17			
0	Potroibon		10			
0	o 1		10 10			
•	5.1		10			
9	Einstellen		19			
	9.1	Beispiel: Geräteparameter andern	19			
	9.2	Beispiel: Gerateadresse andern	11			
	9.3	Beispiel: Gerat auf Werkseinstellung zurücksetzen	22			

Störungen beseitigen	24			
1 Instand halten				
2 Reparieren				
12.1 Geräte zurücksenden	25			
Entsorgen	25			
	Störungen beseitigen Instand halten Reparieren 12.1 Geräte zurücksenden Entsorgen			

1 Über diese Anleitung

Die Anleitung beschreibt den Aufbau, die Funktionen und den Einsatz des Produkts und hilft Ihnen, das Produkt bestimmungsgemäß zu betreiben. Lesen Sie die Anleitung vor dem Gebrauch des Produkts aufmerksam durch. So vermeiden Sie mögliche Personen-, Sach- und Geräteschäden. Bewahren Sie die Anleitung auf, solange das Produkt genutzt wird. Falls Sie das Produkt weitergeben, geben Sie auch diese Anleitung mit.

1.1 Zielgruppen

Die vorliegende Anleitung richtet sich an fachlich geschultes Personal und muss von jeder Person sorgfältig gelesen werden, die das Gerät montiert, in Betrieb nimmt, betreibt, instand hält, demontiert oder entsorgt.

1.2 Symbolerläuterung

In dieser Anleitung werden folgende Symbole verwendet:

	GEFAHR GEFAHR kennzeichnet eine gefährliche Situation mit hohem Risiko, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht vermieden wird.
	WARNUNG WARNUNG kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.
	VORSICHT VORSICHT kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zu mit- telschweren oder leichten Verletzungen führen kann, wenn sie nicht vermieden wird.
!	ACHTUNG ACHTUNG kennzeichnet eine Situation, die zu Sachschäden führen kann, wenn sie nicht vermieden wird.
i	HINWEIS Unter HINWEIS finden Sie Tipps, Empfehlungen und nützliche Informationen zu spe- ziellen Handlungsschritten und Sachverhalten. Die Hinweise erleichtern Ihnen die Arbeit und helfen Ihnen, Mehrarbeit zu vermeiden.
	HANDLUNGSAUFFORDERUNG Dieses Zeichen kennzeichnet Handlungsschritte, die der Anwender ausführen muss.
⇔	HANDLUNGSRESULTAT Dieses Zeichen kennzeichnet relevante Handlungsresultate.

1.3 Weitere Unterlagen

Ergänzend zu diesem Dokument finden Sie im Internet unter www.turck.com folgende Unterlagen:

- Datenblatt
- Kurzbetriebsanleitung

1.4 Feedback zu dieser Anleitung

Wir sind bestrebt, diese Anleitung ständig so informativ und übersichtlich wie möglich zu gestalten. Haben Sie Anregungen für eine bessere Gestaltung oder fehlen Ihnen Angaben in der Anleitung, schicken Sie Ihre Vorschläge an techdoc@turck.com.

2 Hinweise zum Produkt

2.1 Produktidentifizierung

Diese Anleitung gilt für die folgenden Drehgeber mit SAE J1939-Schnittstelle:

- REM-...-9F32B-H1151
- RES-...-9F14B-H1151

2.2 Lieferumfang

Im Lieferumfang sind enthalten:

- Drehgeber Sensor
- Kurzbetriebsanleitung

2.3 Rechtliche Anforderungen

- Die Geräte fallen unter folgende EU-Richtlinien:
- 2014/30/EU (Elektromagnetische Verträglichkeit)
- 2011/65/EU (RoHS-Richtlinie)
- 2012/19/EU (WEEE II)

2.4 Hersteller und Service

Hans Turck GmbH & Co. KG

Witzlebenstraße 7

45472 Mülheim an der Ruhr

Germany

Turck unterstützt Sie bei Ihren Projekten von der ersten Analyse bis zur Inbetriebnahme Ihrer Applikation. In der Turck-Produktdatenbank finden Sie Software-Tools für Programmierung, Konfiguration oder Inbetriebnahme, Datenblätter und CAD-Dateien in vielen Exportformaten. Über folgende Adresse gelangen Sie direkt in die Produktdatenbank: www.turck.de/produkte Für weitere Fragen ist das Sales-und-Service-Team in Deutschland telefonisch unter folgenden Nummern zu erreichen:

- Vertrieb: +49 208 4952-380
- Technik: +49 208 4952-390

Außerhalb Deutschlands wenden Sie sich bitte an Ihre Turck-Landesvertretung.

3 Zu Ihrer Sicherheit

Das Produkt ist nach dem Stand der Technik konzipiert. Dennoch gibt es Restgefahren. Um Personen- und Sachschäden zu vermeiden, müssen Sie die Sicherheits- und Warnhinweise beachten. Für Schäden durch Nichtbeachtung von Sicherheits- und Warnhinweisen übernimmt Turck keine Haftung.

3.1 Bestimmungsgemäße Verwendung

Das Gerät ist ausschließlich zum Einsatz im industriellen Bereich bestimmt.

Die Drehgeber mit SAE J1939-Schnittstelle dienen zum Messen von Winkelbewegungen. Dazu nehmen die Geräte mechanische Drehbewegungen auf und setzen diese in digitale Ausgangssignale um.

Das Gerät darf nur wie in dieser Anleitung beschrieben verwendet werden. Jede andere Verwendung gilt als nicht bestimmungsgemäß. Für daraus resultierende Schäden übernimmt Turck keine Haftung.

3.2 Naheliegende Fehlanwendung

- Die Geräte sind keine Sicherheitsbauteile und dürfen nicht zum Personen- und Sachschutz eingesetzt werden.
- Jeder Gebrauch, der die maximal zulässige mechanische Drehzahl (siehe technische Daten) überschreitet, gilt als nicht bestimmungsgemäß.

3.3 Allgemeine Sicherheitshinweise

- Das Gerät erfüllt ausschließlich die EMV-Anforderungen für den industriellen Bereich und ist nicht zum Einsatz in Wohngebieten geeignet.
- Nur fachlich geschultes Personal darf das Gerät montieren, installieren, betreiben, parametrieren und instand halten.
- Das Gerät nur in Übereinstimmung mit den geltenden nationalen und internationalen Bestimmungen, Normen und Gesetzen einsetzen.
- Wenn ein gefahrloser Betrieb nicht mehr gewährleistet ist: Gerät außer Betrieb nehmen und gegen unbeabsichtigtes Wiedereinschalten sichern.

4 Produktbeschreibung

Die Drehgeber der Baureihe REM... und RES... mit SAE J1939-Schnittstelle sind als Ausführungen mit Vollwelle oder Hohlwelle verfügbar. Erhältlich sind Geräte in drei Baugrößen von 58 bis 100 mm.

Die SAE J1939-Drehgeber liefern die aktuelle Winkelposition in digitaler Form über Parametergruppen (PG).

4.1 Geräteübersicht

Abb. 1: Beispiel – Drehgeber mit Hohlwelle

Abb. 2: Beispiel – Drehgeber mit Vollwelle

4.2 Funktionsprinzip

Drehgeber erfassen Rotationsbewegungen, z. B. die Winkelgeschwindigkeit einer Welle. Die Rotationsbewegungen wandeln Drehgeber in elektrische Signale um. Die elektrischen Signale geben die Geräte an eine übergeordnete Steuerung zur Auswertung weiter. Unterschieden werden absolute und inkrementale Drehgeber als Hohlwellen- oder Vollwellengeräte. Absolute Drehgeber stellen den Winkelwert auch nach einer Änderung im ausgeschalteten Zustand nach dem Einschalten zur Verfügung. Inkrementale Drehgeber erkennen Positionsveränderungen nur im aktiven Zustand durch Zählen von periodischen Mustern. Dazu wird typischerweise eine rotierende Scheibe optisch abgetastet.

4.3 Funktionen und Betriebsarten

4.3.1 Ausgangsfunktion

Das Gerät verfügt über eine SAE J1939-Schnittstelle gemäß ISO 11898. Über die Steuerungssoftware können verschiedene Gerätefunktionen eingestellt und parametriert werden (s. Abschnitt "Einstellen").

4.3.2 Abschlusswiderstand

Über die SAE J1939-Schnittstelle kann ein Busabschlusswiderstand zu- und abgeschaltet werden.

4.4 Technisches Zubehör

Maßbild	Тур	Ident-No.	Beschreibung
	RKC5701-5M	6931034	Busleitung für CAN (DeviceNet, CANopen), M12-Kupplung, gerade, A-codiert, Leitungslänge 5 m, Mantelmaterial: PUR, anthrazit, Ende offen; andere Leitungslängen und Ausführungen lieferbar, siehe www.turck.com
	RSC5701-5M	6931036	Busleitung für CAN (DeviceNet, CANopen), M12-Stecker, gerade, A-codiert, Leitungslänge 5 m, Mantelmaterial: PUR, anthrazit, Ende offen; andere Leitungslängen und Ausführungen lieferbar, siehe www.turck.com
	RKC 572-2M	U5311-02	Busleitung für CAN (DeviceNet, CANopen), M12-Kupp- lung, gerade, A-codiert, Leitungslänge 2 m, Mantelmate- rial: PVC, grau, Ende offen; andere Leitungslängen und Ausführungen lieferbar, siehe www.turck.com
	RKC 572-xM/ S3117	U-54470	Busleitung für CAN (DeviceNet, CANopen), M12-Kupp- lung ohne Drain-Anschluss an Pin 1 auf BUS, gerade, A- codiert, Leitungslänge 2 m, Mantelmaterial: PVC, grau, Ende offen; andere Leitungslängen und Ausführungen lieferbar, siehe www.turck.com
	FSM-2FKM57	6622101	T-Verteiler ohne Leitung für CAN (DeviceNet, CANopen), M12-Anschlussstück, 5-polig

5 Montieren

ACHTUNG

Fehlerhafte Montage Geräteschaden am Sensor

- Drehgeber nicht modifizieren oder zerlegen.
- ▶ Welle nicht nachträglich bearbeiten.
- Gerät nicht mit dem Hammer ausrichten.
- Schlagbelastungen vermeiden.
- Drehgeberwelle nur innerhalb der zulässigen Werte belasten (siehe technische Daten).
- Drehgeber nicht an Wellen und Flanschen gleichzeitig starr miteinander verbinden. Kupplung zwischen Antriebswelle und Geberwelle bzw. zwischen Hohlwellen-Geber-Flansch verwenden.

Abb. 3: Montageansicht – nicht öffnen

Abb. 5: Montageansicht – nicht mit dem Hammer ausrichten

Abb. 4: Montageansicht – nicht nachträglich bearbeiten

Abb. 6: Montageansicht – nicht an Wellen und Flanschen gleichzeitig starr verbinden

5.1 Vollwellengeber mit Kupplung montieren

- Welle auf Versatz überprüfen.
- Die Maximalwerte f
 ür Axialversatz, Radialversatz und Winkelversatz den technischen Daten der Kupplung entnehmen.

Abb. 7: Axialversatz

Abb. 8: Radialversatz

Abb. 9: Winkelversatz

- Kupplung während der Montage vor zu starker Biegung und Beschädigung schützen.
- Kupplung auf der Welle ausrichten.
- Kupplung mit Spann- oder Klemmschrauben am Gerät befestigen. Das max. Anzugsdrehmoment entnehmen Sie dem Datenblatt der verwendeten Schrauben.

5.2 Hohlwellengeber mit Kupplung montieren

Drehgeber mit Kupplung auf Welle montieren.

Abb. 10: Mit Kupplung auf Welle montieren

• Kupplung mit Antriebsflansch verschrauben.

Abb. 11: Kupplung mit Antriebsflansch verschrauben

• Klemmnabe vorsichtig anziehen.

Abb. 12: Klemmnabe anziehen

6 Anschließen

Der Drehgeber verfügt über einen 5-poligen M12 × 1-Steckverbinder-Anschluss für CANopen-Eingang und CANopen-Ausgang. Die Pinbelegung entnehmen Sie dem Sensorlabel oder dem Datenblatt.

HINWEIS Max. Leitungslängen bei Stichleitungen und bei der Gesamtlänge des CAN-Bus beachten.

6.1 Anschlussbild

Abb. 13: Anschlussbild

Die Drehgeber sind mit einer Bus-Stammleitung in verschiedenen Längen oder einem M12-Stecker ausgestattet und können im Gerät terminiert werden. Die Drehgeber sind als Endgeräte vorgesehen und nicht mit einem integrierten T-Verbinder und durchgeschleiftem Bus ausgestattet. Ein optionaler T-Verbinder ist lieferbar [▶ 9], siehe www.turck.com.

7 In Betrieb nehmen

7.1 Parameter – Default-Einstellungen

Auf dem Gerät sind die folgenden Default-Werte hinterlegt:

Byte	Parameter-Name	Wert	Bedeutung
01	OperatingParameter	0x04	Betriebsart: Skalierung aktiv, Drehrich- tung CW
25	MUR	0x4000	Auflösung pro Umdrehung: 16.384 Schrit- te
69	TMR	0x10000000	Gesamtanzahl der Mess-Schritte: 268435456
1013	SensorCycleTime	0x32	Zykluszeit: 50 ms
14	CANBusTermination	0x01	Busabschluss ein
1518	SensorPresetValue	-	
19	SensorPresetEnable	-	
20	BaudRate	0x01	250 kbps
	J1939-Adresse	0x20	32

7.2 Parameterdaten

Zur Übertragung der Daten wird standardmäßig PG 0xEF00 genutzt.

Byte-Nr.	Bit											
	7	6	5	4	3	2	1	0				
0	Operating	OperatingParameter (LSBMSB)										
1												
2	MUR (LSB	MUR (LSBMSB)										
3												
4												
5												
6	TMR (LSB.	MSB)										
7												
8												
9												
10	SensorCyc	cleTime (LS	BMSB)									
11												
12												
13												
14	CANBusTe	ermination	(LSBMSI	3)								
15	SensorPre	setValue (L	SBMSB)									
16												
17												
18												
19	SensorPre	setEnable										
20	BaudRate											

7.2.1 Bedeutung der Parameter-Bits

Beschreibung	Bedeutung
OperatingParameter	Drehrichtung und Skalierung 0x00: Skalierung nicht aktiv, Drehrichtung im Uhrzeigersinn (CW) 0x01: Skalierung nicht aktiv, Drehrichtung gegen den Uhrzeigersinn (CCW) 0x04: Skalierung aktiv, Drehrichtung im Uhrzeigersinn (CW) 0x05: Skalierung aktiv, Drehrichtung gegen den Uhrzeigersinn (CCW)
MUR	Auflösung pro Umdrehung, einstellbar von 116384 (0x010x4000) Der Parameter MUR kann nur genutzt werden, wenn die Skalierung aktiv ist. Bei einer Änderung des Parameters MUR wird automatisch das Verhältnis zum Wert des Parameters TMR überprüft. Wenn das Verhältnis der Parameter ungültig ist, gibt das Gerät eine Fehlermeldung aus und der eingestellte Wert wird ver- worfen.
TMR	Gesamtanzahl der Mess-Schritte von Singleturn und Multiturn, einstellbar von 14294967296 (0x010x00010000000) Die maximale physikalische Auflösung wird mit einem Faktor beaufschlagt. Der Faktor ist immer < 1. Nach der skalierten Gesamtposition der Mess-Schritte stellt sich der Drehgeber wieder auf null. Der Parameter TMR kann nur genutzt werden, wenn die Skalierung aktiv ist. Bei einer Änderung des Parameters TMR wird automatisch das Verhältnis zum Wert des Parameters MUR überprüft. Wenn das Verhältnis der Parameter ungül- tig ist, gibt das Gerät eine Fehlermeldung aus und der eingestellte Wert wird ver- worfen.
SensorCycleTime	Zykluszeit in ms, in der die aktuelle Position über das Messdaten-PG übertragen wird, einstellbar von 565535 (0x050xFFF) Die Timer-gesteuerte Übertragung wird aktiv, sobald in der Konfigurations-PGN SensorCycleTime > 0 eingetragen wird.
CANBusTermination	Busabschluss einschalten und ausschalten. Bei einer Änderung des Parameters wird die Einstellung ohne Neustart übernommen. 0x00: Busabschluss aus 0x01: Busabschluss ein 0xFF: Busabschluss nicht verändern
SensorPresetValue	Positionswert des Drehgebers, einstellbar von 14294967296 (0x010x00010000000) Der Positionswert wird auf den eingegebenen Preset-Wert eingestellt. Dadurch kann z. B. die Nullposition des Drehgebers mit dem Maschinen-Nullpunkt abge- glichen werden. Der Wert des Parameters PresetValue muss kleiner sein als der Wert des Parame- ters TMR.
SensorPresetEnable	Voreingestellten Positionswert (PresetValue) des Drehgebers aktivieren 0x00: voreingestellter Positionswert nicht aktiv 0x01: voreingestellter Positionswert aktiv Wenn der voreingestellte Positionswert über den Parameter PresetEnable akti- viert wird, muss der Parameter BaudRate den Wert 0xFF haben.
BaudRate	Übertragungsrate 0x01: 250 kbps 0x02: 500 kbps 0xFF: Übertragungsrate nicht verändern Wenn der voreingestellte Positionswert über den Parameter PresetEnable akti- viert wird, muss der Parameter BaudRate den Wert 0xFF haben.

7.3 Prozessdaten

Zur Übertragung der Daten wird standardmäßig PG 0xFFAA genutzt.

Byte-Nr.	Bit											
	7	6	5	4	3	2	1	0				
0	EncoderPo	EncoderPosition (LSBMSB)										
1												
2												
3												
4	EncoderSp	EncoderSpeed (LSBMSB)										
5												
6	EncoderD	iagStatus (LSBMSB)								
7												

7.3.1 Bedeutung der Status-Bits

Beschreibung	Bedeutung
EncoderPosition	Positionswert Mögliche Werte: 04294967296 (0x000x000100000000) Bei aktivierter Skalierung ist das Verhältnis TMR/MUR aktiv, ansonsten wird die 32-Bit-Rohposition des Sensors ausgegeben.
EncoderSpeed	Aktuelle Geschwindigkeit in min ⁻¹ als 16-Bit-Wert (vorzeichenbehaftet) Das Vorzeichen gibt die Drehrichtung an.
EncoderDiagStatus	Diagnosemeldungen 0x0000: kein Fehler 0xEE00: allgemeiner Fehler 0xEE01: ungültige Auflösung, Parameter MUR ist 0 oder >16384 (0x4000) 0xEE02: Wert des Parameters TMR ist 0 Andere Werte: sonstige Fehler

8 Betreiben

8.1 LED-Anzeigen

LED-Anzeige	Bedeutung
grün	Busverbindung aktiv Address Claimed Wenn Zykluszeit ≠ 0: azyklischer PGN-Transfer aktiv
grün blinkt	Gerät fehlerfrei
rot	 keine Verbindung zum Master mögliche Ursachen: Kurzschluss am Bus kein Bus vorhanden falsche Übertragungsrate Adresskonflikt (noch keine Adresse vorhanden oder Address Claim verloren)
rot und grün blinken abwechselnd	Datenverbindung zum Sensor fehlerhaft oder Sensor defekt. Wenden Sie sich an Turck.
rot und grün blinken gleichzeitig	Watchdog-Fehler Wenden Sie sich an Turck.

9 Einstellen

9.1 Beispiel: Geräteparameter ändern

HINWEIS

Das folgende Beispiel enthält fiktive Werte und ungültige Konfigurationsparameter.

Im folgenden Beispiel sollen die Geräteparameter eines Drehgebers mit der Busadresse 0x20 geändert werden. Die Busadresse der Steuerung lautet 0x01. Die folgende Tabelle enthält exemplarische Konfigurationsdaten:

Parameter	Byte	Wert					
		Hexadezimal	Hexadezimal (Endian)	Dezimal			
OperatingParameter	2	0x0102	0x0201	258			
MUR	4	0x03040506	0x06050403	50595078			
TMR	4	0x0708090A	0x0A090807	117967114			
SensorCycleTime	4	0x0B0C0D0E	0x0E0D0C0B	185339150			
CANBusTermination	1	0x0F	0x0F	16			
SensorPresetValue	4	0x10111213	0x13121110	269554195			
SensorPresetEnable	1	0x14	0x14	20			
BaudRate	1	0x15	0x15	21			

SAE J1939 überträgt die Daten mit dem niederwertigsten Byte zuerst (Little-Endian-Format). Beispielhaft wird hier folgender Rohdatenstrom an den Drehgeber übertragen: 02 01 06 05 04 03 0A 09 08 07 0E 0D 0C 0B 0F 13 12 11 10 14 15 (vgl. Tabellenspalte "Hexadezimal (Endian)")

- Die Daten müssen auf mehrere CAN-Frames verteilt und per CMDT-Transportprotokoll übertragen werden.
- CAN-Frames müssen als Extended Frames (29 Bit Identifier) gesendet werden.
- Pro CAN-Frame lassen sich maximal 8 Bytes Nutzdaten übertragen.
- CMDT-Verbindung mit den eincodierten Parametern aufbauen.
- RTS-Paket mit den folgenden Inhalten an den Drehgeber senden und Antwort des Sensors abwarten:
- Control Byte: 0x10
- Message Size: 0x15
- Total number of Packets: 3
- Maximum number of Packets: 0xFF
- PG Number: 0xEF00
- Source Address: 0x01
- Destination Address: 0x20

	Byte							
	0	1	2	3	4	5	6	7
RTS-Anfrage auf CAN-ID senden: 0x18EC2001	0x10	0x15	0x00	0x03	0xFF	0x00	0xEF	0x00
CTS-Antwort auf CAN-ID empfangen: 0x18EC0120	0x11	0x03	0x01	0xFF	0xFF	0x00	0xEF	0x00

Konfigurationsdaten von der Steuerung in drei CAN-Frames an den Drehgeber senden: 02 01 06 05 04 03 0A 09 08 07 0E 0D 0C 0B 0F 13 12 11 10 14 15

► Zwischen dem Versenden der CAN-Frames einen zeitlichen Abstand von 50 ms einhalten. Die Sequenz-Nummer der Frames wird bei der Übertragung jeweils in Byte 0 angezeigt. Byte 1...7 enthalten fortlaufend die Rohdaten.

	Byte										
	0	1	2	3	4	5	6	7			
TP senden, Sequenz-Nr. 1, CAN-ID: 0x18EB2001	0x01	0x02	0x01	0x06	0x05	0x03	0x03	0x0A			
TP senden, Sequenz-Nr. 2, CAN-ID: 0x18EB2001	0x02	0x09	0x08	0x07	0x0E	0x0D	0x0C	0x0F			
TP senden, Sequenz-Nr. 3, CAN-ID: 0x18EB2001	0x03	0x0F	0x13	0x12	0x11	0x10	0x14	0x15			

Der Drehgeber bestätigt die erfolgreiche Übertragung:

	Byte											
	0	1	2	3	4	5	6	7				
EoMA empfangen, CAN-ID: 0x18EC0120	0x13	0x15	0x00	0x03	0xFF	0x00	0xEF	0x00				

9.2 Beispiel: Geräteadresse ändern

Die Geräteadresse des Drehgebers kann durch das Senden der **Commanded Address**-PGN (CA) geändert werden.

- Die neue Adresse wird im Flash des Drehgebers nichtflüchtig gespeichert.
- Der Drehgeber startet mit der neuen Adresse neu.
- Der Drehgeber sendet seinen Address Claim und ggf. Messdaten von der neuen Adresse.

Die folgende Abbildung zeigt den Datenaustausch-Log einer Adressänderung. Für das Beispiel wurde die zyklische Messdatenübertragung ausgeschaltet.

Time		Chn PGN	Name	Event Type	Sender Node	Receive Node	Src	Dest	Prio	Dir	DLC	Data	J1939 Interpretation	J1939 Violati
8	54.698983	CAN 1 EE00p	AC	CAN Frame	ShiftCtrl/Console:Turck		20	FF	6	Rx	8	A1 85 49 24 11 05 06 85	[ACL] Address Claimed	
	-~ Identity	Number	636321	985A1										
	-~ Manufac	turerCode	290	122 Assigned by NMEA 20	00 Committee									
	-~ ECUInst	ance	1	1										
	-~ Function	Instance	2	2										
	-~ Function		5	5										
	-~ VehicleS	ystem	3	3										
	-~ VehicleS	ystemInstance	5	5										
	-~ Industry	Group	0	0 0 = Global;										
1	-~ Arbitrary	AddressCapable	1	1	International Providence		1000	1.220	51	23	121			
Đ	90.507043	CAN 1 EE00p	AC	CAN Frame	OffB-DiagTool:Vector Cantech		F9	FF	6	Tx	8	01 00 A0 E8 00 81 00 00	[ACL] Address Claimed	
Œ	90.734671	CAN 1 ECOOp	TPCMxx	CAN Frame	OffB-DiagTool:Vector Cantech		F9	FF	7	Tx	8	20 09 00 02 FF D8 FE 00	[TP] BAM PGN: FED8p Size: 9 Packets: 2	
Đ	90.881579	CAN 1 EB00p	TPDT	CAN Frame	OffB-DiagTool:Vector Cantech		F9	FF	2	Tx	8	01 A1 B5 49 24 11 05 06	[TP] Sequence: 1	
E	91.014023	CAN 1 EB00p	TPDT	CAN Frame	OffB-DiagTool:Vector Cantech		F9	FF	7	Tx	8	02 85 25 FF FF FF FF FF	[TP] Sequence: 2	
8	91.014023	CAN 1 FED8p	CA	J1939 Frame	OffB-DiagTool:vector Cantech		F9	PP-	1	IX	9	A1 85 49 24 11 05 06 85 25		
	-~ Identity	vumber	636321	985A1										
	ECIllant	turercode	290	122 Assigned by NMEA 20	oo committee									
	Econsu	drice	1	1										
	Function	tristarce	2	2										
	VehicleS	intern	2	2										
	VehicleS	voteminstance	5	5										
	-~ Industry	Group	0	0.0 = Global:										
	-~ Arbitrary	AddressCanable	1	1										
	-~ Address	Assignment	37	25 This 8 hit field is the 9	th hyte of the data field of the Comm	anded Address mess	age. It.	contain						
		CAN 1 EEOOo	10	CANE	Shi@Chil/ConselerTurely		25	EE	6	Dw	0	A1 85 40 24 11 05 06 85	[ACI] Address Claimed	

Abb. 14: Beispiel – Datenaustausch-Log

- Zum Zeitpunkt 54.69 meldet sich der Drehgeber nach dem Einschalten der Spannungsversorgung mit der Adresse 0x20 am Bus an.
- Zum Zeitpunkt 90.50 meldet sich das Diagnose-Tool (hier: Vector CANalyzer) am Bus an.
- Von Zeitpunkt 90.73...91.01 schickt das Diagnose-Tool die Commanded Address-PGN an den Drehgeber. Diese Übertragung ist per J1939-BAM-Protokoll auf drei physikalische CAN-Frames verteilt. Der J1939-Name des Address Claim wird erneut angezeigt. Am Ende der Übertragung befinden sich die neue Adresse 0x25 sowie Füllbytes mit dem Inhalt 0xFF.

	Byte										
	0	1	2	3	4	5	6	7			
TP senden, BAM, CAN-ID: 0x18EB2001	0x20	0x09	0x00	0x02	0xFF	0xD8	0xFE	0x00			
TP senden, Sequenz-Nr. 1, CAN-ID: 0x18EB2001	0x01	0xA1	0xB5	0x49	0x24	0x11	0x05	0x06			
TP senden, Sequenz-Nr. 2, CAN-ID: 0x18EB2001	0x02	0x85	0x25	0xFF	0xFF	0xFF	0xFF	0xFF			

Zum Zeitpunkt 91.03 meldet sich der Drehgeber mit der neuen Adresse 0x25 wieder am Bus an.

9.3 Beispiel: Gerät auf Werkseinstellung zurücksetzen

Im folgenden Beispiel werden die Geräteparameter eines Drehbegers mit der Busadresse 0x20 auf die Default-Werte [> 15] zurückgesetzt. Der Preset-Wert wird auf 0 gesetzt. Die Busadresse der Steuerung lautet 0x01.

Parameter	Byte	Wert							
		Hexadezimal	Hexadezimal (Endian)	Dezimal					
OperatingParameter	2	0x04	0x0400	4					
MUR	4	0x4000	0x00400000	16384					
TMR	4	0x10000000	0x00000010	268435456					
SensorCycleTime	4	0x32	0x32000000	50					
CANBusTermination	1	0x01	0x01	1					
SensorPresetValue	4	0x00000000	0x00000000	0					
SensorPresetEnable	1	0x01	0x01	1					
BaudRate	1	0x01	0x01	1					

SAE J1939 überträgt die Daten mit dem niederwertigsten Byte zuerst (Little-Endian-Format). Beispielhaft wird folgender Rohdatenstrom an den Drehgeber übertragen:

04 00 00 40 00 00 00 00 00 10 32 00 00 00 01 00 00 00 00 01 01 (vgl. Tabellenspalte "Hexadezimal (Endian)")

- Die Daten müssen auf mehrere CAN-Frames verteilt und per CMDT-Transportprotokoll übertragen werden.
- CAN-Frames müssen als Extended Frames (29 Bit Identifier) gesendet werden.
- Pro CAN-Frame lassen sich maximal 8 Bytes Nutzdaten übertragen.
- CMDT-Verbindung mit den eincodierten Parametern aufbauen.
- RTS-Paket mit den folgenden Inhalten an den Drehgeber senden und Antwort des Sensors abwarten:
- Control Byte: 0x10
- Message Size: 0x15
- Total number of Packets: 3
- Maximum number of Packets: 0xFF
- PG Number: 0xEF00
- Source Address: 0x01
- Destination Address: 0x20

	Byte										
	0	1	2	3	4	5	6	7			
RTS-Anfrage auf CAN-ID senden: 0x18EC2001	0x10	0x15	0x00	0x03	0xFF	0x00	0xEF	0x00			
CTS-Antwort auf CAN-ID empfangen: 0x18EC0120	0x11	0x03	0x01	0xFF	0xFF	0x00	0xEF	0x00			

Konfigurationsdaten von der Steuerung in drei CAN-Frames an den Drehgeber senden: 04 00 00 40 00 00 00 00 10 32 00 00 00 01 00 00 00 01

► Zwischen dem Versenden der CAN-Frames einen zeitlichen Abstand von 50 ms einhalten. Die Sequenz-Nummer der Frames wird bei der Übertragung jeweils in Byte 0 angezeigt. Byte 1...7 enthalten fortlaufend die Rohdaten.

	Byte										
	0	1	2	3	4	5	6	7			
TP senden, Sequenz-Nr. 1, CAN-ID: 0x18EB2001	0x01	0x04	0x00	0x00	0x40	0x00	0x00	0x00			
TP senden, Sequenz-Nr. 2, CAN-ID: 0x18EB2001	0x02	0x00	0x00	0x10	0x32	0x00	0x00	0x00			
TP senden, Sequenz-Nr. 3, CAN-ID: 0x18EB2001	0x03	0x01	0x00	0x00	0x00	0x00	0x01	0x01			

Dre Drehgeber bestätigt die erfolgreiche Übertragung:

	Byte												
	0	1	2	3	4	5	6	7					
EoMA empfangen, CAN-ID: 0x18EC0120	0x13	0x15	0x00	0x03	0xFF	0x00	0xEF	0x00					

10 Störungen beseitigen

Sollte das Gerät nicht wie erwartet funktionieren, überprüfen Sie zunächst, ob Umgebungsstörungen vorliegen. Sind keine umgebungsbedingten Störungen vorhanden, überprüfen Sie die Anschlüsse des Geräts auf Fehler.

Ist kein Fehler vorhanden, liegt eine Gerätestörung vor. In diesem Fall nehmen Sie das Gerät außer Betrieb und ersetzen Sie es durch ein neues Gerät des gleichen Typs.

11 Instand halten

Der ordnungsgemäße Zustand der Verbindungen und Kabel muss regelmäßig überprüft werden.

Die Geräte sind wartungsfrei, bei Bedarf trocken reinigen.

12 Reparieren

Das Gerät ist nicht zur Reparatur durch den Benutzer vorgesehen. Sollte das Gerät defekt sein, nehmen Sie es außer Betrieb. Bei Rücksendung an Turck beachten Sie unsere Rücknahmebedingungen.

12.1 Geräte zurücksenden

Rücksendungen an Turck können nur entgegengenommen werden, wenn dem Gerät eine Dekontaminationserklärung beiliegt. Die Erklärung steht unter

http://www.turck.de/de/produkt-retoure-6079.php

zur Verfügung und muss vollständig ausgefüllt, wetter- und transportsicher an der Außenseite der Verpackung angebracht sein.

13 Entsorgen

Die Geräte müssen fachgerecht entsorgt werden und gehören nicht in den normalen Hausmüll.

205

www.turck.com